

How to evaluate Sunctions for a given Value:
1) Replace
$$x$$
 with given Value
2) Simplify
ex: Griven $S(x) = \frac{2}{3}x - 4$
Find
1) $S(0) = \frac{2}{3}(0) - 4$
 $x=0 = 0 - 4$
 $x=0 = 2 - 4$
 $x=0 = 2 - 2 - 4$
 $x=0 = 2 - 4$
 $x=0$

$$\begin{array}{l} f(x) = \chi^{3} + 8 \\ \begin{array}{l} Sind \\ 1)f(0) = 0^{3} + 8 \\ = 0 + 8 \\ = 8 \\ \end{array} \begin{array}{l} x \\ = 8 \\ 3) \\ 5(-2) \\ = (-2) \\ = 8 \\ = 16 \\ \end{array} \begin{array}{l} x \\ = 8 \\ -16 \\ = 16 \\ \end{array} \begin{array}{l} x \\ = 8 \\ -16 \\ -16 \\ \end{array} \begin{array}{l} x \\ = 8 \\ -16 \\ -16 \\ -16 \\ \end{array} \begin{array}{l} x \\ = 8 \\ -16 \\ -16 \\ -16 \\ \end{array} \begin{array}{l} x \\ = 8 \\ -16$$

$$\begin{aligned} f(x) &= x^2 - 4x \\ f(x) &= x^2 + 2x + 4 - 4x \\ f(x) &= x^2 + 4x$$

$$\begin{aligned} S(x) &= \frac{\lambda - 5}{\lambda + 4} \\ 1) S(0) &= \frac{0 - 5}{0 + 4} = \frac{1 - 5}{4} \\ 3) S(-4) &= \frac{-4 - 5}{-4 + 4} = \frac{-9}{0} \\ \hline \\ &= \frac{10}{2 \text{ ero}} \\ \hline \\ &= \frac{-10}{-1} = \frac{-10}{-1} \end{aligned}$$

$$\begin{array}{l} f(x) = |\chi + 5| \\ f(x) = |\chi + 5| \\ f(x) = |0 + 5| \\ = |5| = 5 \\ \end{array} \qquad \begin{array}{l} 2) f(-6) = |-6 + 5| \\ = |-1| = 1 \\ \end{array} \\ f(x - 5) \\ = |1| = 1 \\ \end{array} \\ \begin{array}{l} 3) f(-5) = |-5 + 5| \\ = |5| = 5 \\ \end{array} \qquad \begin{array}{l} 4) f(x - 5) \\ = |\chi - 5| \\ = |\chi - 5| \\ \end{array} \\ \begin{array}{l} -10| \\ = |\chi - 5| \\ \end{array} \end{array}$$

Operations with Functions:
1) Addition:

$$(5 + 9)(x) = 5(x) + g(x)$$

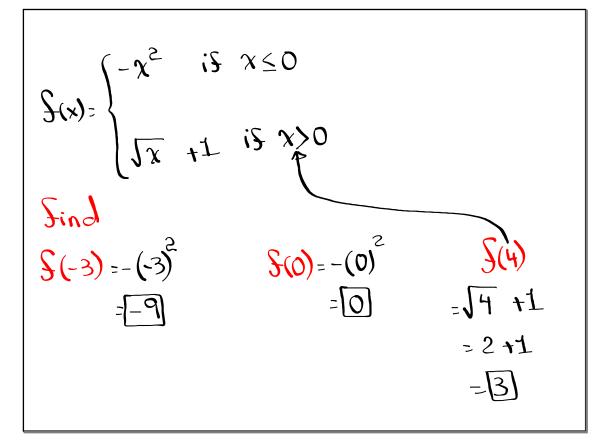
ex: $5(x) = 2x - 8$, $g(x) = x + 5$
Find $(5 + g)(x) = 5(x) + g(x)$
 $= 2x - 8 + 3(x) = -3x - 3$
2) Subtraction:
 $(5 - g)(x) = 5(x) - g(x)$
Ex: $5(x) = x + 6$, $g(x) = 3x - 2$
Find $(5 - g)(x) = 5(x) - g(x)$
 $= x + 6 - (3x - 2)$
 $= x + 6 - (3x - 2)$
 $= 2x + 8$

Г

3) Multiplication:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

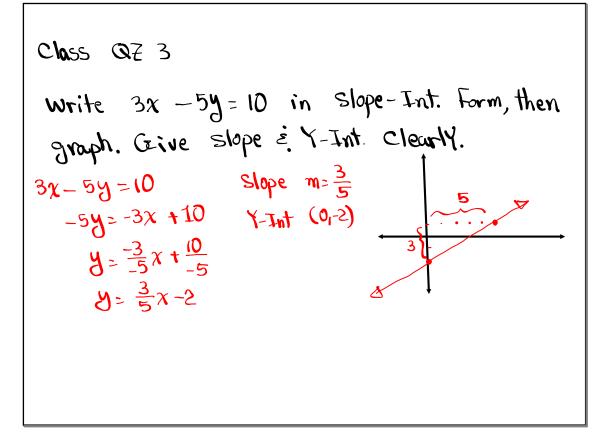
Solid
dot
Ex: $f(x) = ax+3$, $g(x) = x-4$
Find $(f \cdot g)(x) = f(x) \cdot g(x) = (2x+3)(x-4)$
 $= 2x^2 - 8x + 3x - 12$
 $= 2x^2 - 5x - 12$
4) Division!
 $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}; g(x) = 0$
Ex: $f(x) = x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 7$, $g(x) = x - 3$
 $= 3x + 3$


Г

Given
$$S(x) = x + 6$$
, $g(x) = x - 6$
Find
1) $(f + g)(x) = f(x) + g(x)$
 $= x + 6 + x - 6 = 2x$
2) $(f - g)(x) = f(x) - g(x)$
 $= x + 6 - (x - 6) = x + 6 - x + 6 = 12$
3) $(f \cdot g)(x) = f(x) \cdot g(x) = (x + 6)(x - 6)$
 $= x^2 - 6x + 6x - 36$
4) $(\frac{f}{g})(x) = \frac{f(x)}{g(x)} = \frac{x + 6}{x - 6} = \frac{x - 6}{x + 6}$

$$\frac{x}{3} + \frac{-2}{3} + \frac{3}{5} + \frac{5}{3} + \frac{5$$

Piece-wise Sunctions
Sunction is defined by pieces.


$$f(x) = \begin{cases} 2x & if x < 0 & find \\ x^2 & if x > 0 & find \\ x^2 & if x > 0 & find \\ y & y & y & 0 & f(5) = 5^2 + 25 \end{cases}$$

 $f(0) = 0^2 = 0$

A linear Sunction Contains (0,3) and (5,6). (0₁₃)3 b=3_____ Draw this Sunction 3 : (5,6) and Sind its equation in linear Sunction notation. S(x) = mx + b $S(x) = \frac{3}{5}\chi + 3$

Simplify:
$$(5x + 3)^2 - 30x$$

 $= (5x + 3)(5x + 3) - 30x$
 $= 85x^2 + 15x + 15x + 9 - 30x$
 $= 25x^2 + 9$
Factor Completely: $x^2 - x - 30$
 $= (x + 5)(x - 6)$
 $= 3,10$
 $= 5$

Zero-Factor Property:
IS
$$A \circ B = 0$$
, then $A = 0$ or $B = 0$
(maybe both)
Solve $(2-8)(2+5) = 0$
By Z.F.P.
 $2-8=0$ or $2+5=0$
 $2-8=0$ or $2+5=0$
 $2-8=0$ or $2+5=0$
 $2-8=0$ or $2+5=0$
 $2-5$
Solution Set $(-5,8)$

